Negentropy - Correlation Between Statistical Negentropy and Gibbs' Free Energy

Correlation Between Statistical Negentropy and Gibbs' Free Energy

There is a physical quantity closely linked to free energy (free enthalpy), with a unit of entropy and isomorphic to negentropy known in statistics and information theory. In 1873, Willard Gibbs created a diagram illustrating the concept of free energy corresponding to free enthalpy. On the diagram one can see the quantity called capacity for entropy. The said quantity is the amount of entropy that may be increased without changing an internal energy or increasing its volume. In other words, it is a difference between maximum possible, under assumed conditions, entropy and its actual entropy. It corresponds exactly to the definition of negentropy adopted in statistics and information theory. A similar physical quantity was introduced in 1869 by Massieu for the isothermal process (both quantities differs just with a figure sign) and then Planck for the isothermal-isobaric process More recently, the Massieu-Planck thermodynamic potential, known also as free entropy, has been shown to play a great role in the so-called entropic formulation of statistical mechanics, applied among the others in molecular biology and thermodynamic non-equilibrium processes.


where:
- negentropy (Gibbs "capacity for entropy")
– Massieu potential
- partition function
- Boltzmann constant

Read more about this topic:  Negentropy

Famous quotes containing the words free and/or energy:

    You’re the emblem of
    The land I love,
    The home of the free and the brave.
    George M. Cohan (1878–1942)

    The flattering, if arbitrary, label, First Lady of the Theatre, takes its toll. The demands are great, not only in energy but eventually in dramatic focus. It is difficult, if not impossible, for a star to occupy an inch of space without bursting seams, cramping everyone else’s style and unbalancing a play. No matter how self-effacing a famous player may be, he makes an entrance as a casual neighbor and the audience interest shifts to the house next door.
    Helen Hayes (1900–1993)