Application
By using an NIC as a negative resistor, it is possible to let a real generator behave (almost) like an ideal generator, (i.e., the magnitude of the current or of the voltage generated does not depend on the load).
An example for a current source is shown in the figure on the right. The current generator and the resistor within the dotted line is the Norton representation of a circuit comprising a real generator and is its internal resistance. If an INIC is placed in parallel to that internal resistance, and the INIC has the same magnitude but inverted resistance value, there will be and in parallel. Hence, the equivalent resistance is
That is, the combination of the real generator and the INIC will now behave like a composed ideal current source; its output current will be the same for any load . In particular, any current that is shunted away from the load into the Norton equivalent resistance will be supplied by the INIC instead.
The ideal behavior in this application depends upon the Norton resistance and the INIC resistance being matched perfectly. As long as, the equivalent resistance of the combination will be greater than ; however, if, then the impact of the INIC will be negligible. However, when
the circuit is unstable (e.g., when in an unloaded system). In particular, the surplus current from the INIC generates positive feedback that causes the voltage driving the load to reach its power supply limits. By reducing the impedance of the load (i.e., by causing the load to draw more current), the generator–NIC system can be rendered stable again.
In principle, if the Norton equivalent current source was replaced with a Norton equivalent voltage source, a VNIC of equivalent magnitude could be placed in series with the voltage source's series resistance. Any voltage drop across the series resistance would then be added back to the circuit by the VNIC. However, a VNIC implemented as above with an operational amplifier must terminate on an electrical ground, and so this use is not practical. Because any voltage source with nonzero series resistance can be represented as an equivalent current source with finite parallel resistance, an INIC will typically be placed in parallel with a source when used to improve the impedance of the source.
Read more about this topic: Negative Impedance Converter
Famous quotes containing the word application:
“Most people, no doubt, when they espouse human rights, make their own mental reservations about the proper application of the word human.”
—Suzanne Lafollette (18931983)
“I conceive that the leading characteristic of the nineteenth century has been the rapid growth of the scientific spirit, the consequent application of scientific methods of investigation to all the problems with which the human mind is occupied, and the correlative rejection of traditional beliefs which have proved their incompetence to bear such investigation.”
—Thomas Henry Huxley (182595)
“If you would be a favourite of your king, address yourself to his weaknesses. An application to his reason will seldom prove very successful.”
—Philip Dormer Stanhope, 4th Earl Chesterfield (16941773)