Natural Exponential Family - Natural Exponential Families With Quadratic Variance Functions (NEF-QVF)

Natural Exponential Families With Quadratic Variance Functions (NEF-QVF)

A special case of the natural exponential families are those with quadratic variance functions. Six NEFs have quadratic variance functions (QVF) in which the variance of the distribution can be written as a quadratic function of the mean. These are called NEF-QVF. The properties of these distributions were first described by Carl Morris.

Read more about this topic:  Natural Exponential Family

Famous quotes containing the words natural, families, variance and/or functions:

    Mountains are the beginning and the end of all natural scenery.
    John Ruskin (1819–1900)

    The authoritarian child-rearing style so often found in working-class families stems in part from the fact that parents see around them so many young people whose lives are touched by the pain and delinquency that so often accompanies a life of poverty. Therefore, these parents live in fear for their children’s future—fear that they’ll lose control, that the children will wind up on the streets or, worse yet, in jail.
    Lillian Breslow Rubin (20th century)

    There is an untroubled harmony in everything, a full consonance in nature; only in our illusory freedom do we feel at variance with it.
    Fyodor Tyutchev (1803–1873)

    If photography is allowed to stand in for art in some of its functions it will soon supplant or corrupt it completely thanks to the natural support it will find in the stupidity of the multitude. It must return to its real task, which is to be the servant of the sciences and the arts, but the very humble servant, like printing and shorthand which have neither created nor supplanted literature.
    Charles Baudelaire (1821–1867)