Natural Density - Examples

Examples

  • If d(A) exists for some set A, then for the complement set we have d(Ac) = 1 − d(A).
  • Obviously, d(N) = 1.
  • For any finite set F of positive integers, d(F) = 0.
  • If is the set of all squares, then d(A) = 0.
  • If is the set of all even numbers, then d(A) = 0.5 . Similarly, for any arithmetical progression we get d(A) = 1/a.
  • For the set P of all primes we get from the prime number theorem d(P) = 0.
  • The set of all square-free integers has density
  • The density of the set of abundant numbers is known to be between 0.2474 and 0.2480.
  • The set of numbers whose binary expansion contains an odd number of digits is an example of a set which does not have an asymptotic density, since the upper density of this set is
\overline d(A)=\lim_{m \rightarrow \infty} \frac{1+2^2+\cdots +2^{2m}}{2^{2m+1}-1}
= \lim_{m \rightarrow \infty} \frac{2^{2m+2}-1}{3(2^{2m+1}-1)}
= \frac 23\, ,
whereas its lower density is
\underline d(A)=\lim_{m \rightarrow \infty} \frac{1+2^2+\cdots +2^{2m}}{2^{2m+2}-1}
= \lim_{m \rightarrow \infty} \frac{2^{2m+2}-1}{3(2^{2m+2}-1)}
= \frac 13\, .
  • Consider an equidistributed sequence in and define a monotone family of sets :
Then, by definition, for all .

Read more about this topic:  Natural Density

Famous quotes containing the word examples:

    It is hardly to be believed how spiritual reflections when mixed with a little physics can hold people’s attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.
    —G.C. (Georg Christoph)

    In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.
    Michel de Montaigne (1533–1592)

    No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.
    André Breton (1896–1966)