Proof
Suppose the radius of the sphere is and the length of the cylinder (or the tunnel) is .
By the Pythagorean theorem, the radius of the cylinder is
and the radius of the horizontal cross-section of the sphere at height y above the "equator" is
The cross-section of the band with the plane at height y is the region inside the larger circle of radius given by (2) and outside the smaller circle of radius given by (1). The cross-section's area is therefore the area of the larger circle minus the area of the smaller circle:
The radius R does not appear in the last quantity. Therefore the area of the horizontal cross-section at height y does not depend on R. The volume of the band is
and that does not depend on R.
This is an application of Cavalieri's principle: volumes with equal-sized corresponding cross-sections are equal. Indeed, the area of the cross-section is the same as that of the corresponding cross-section of a sphere of radius h/2, which has volume
Read more about this topic: Napkin Ring Problem
Famous quotes containing the word proof:
“Right and proof are two crutches for everything bent and crooked that limps along.”
—Franz Grillparzer (17911872)
“Ah! I have penetrated to those meadows on the morning of many a first spring day, jumping from hummock to hummock, from willow root to willow root, when the wild river valley and the woods were bathed in so pure and bright a light as would have waked the dead, if they had been slumbering in their graves, as some suppose. There needs no stronger proof of immortality. All things must live in such a light. O Death, where was thy sting? O Grave, where was thy victory, then?”
—Henry David Thoreau (18171862)
“It comes to pass oft that a terrible oath, with a swaggering accent sharply twanged off, gives manhood more approbation than ever proof itself would have earned him.”
—William Shakespeare (15641616)