Borel Transform
Nachbin's theorem has immediate applications in Cauchy theorem-like situations, and for integral transforms. For example, the generalized Borel transform is given by
If f is of Ψ-type τ, then the exterior of the domain of convergence of, and all of its singular points, are contained within the disk
Furthermore, one has
where the contour of integration γ encircles the disk . This generalizes the usual Borel transform for exponential type, where . The integral form for the generalized Borel transform follows as well. Let be a function whose first derivative is bounded on the interval, so that
where . Then the integral form of the generalized Borel transform is
The ordinary Borel transform is regained by setting . Note that the integral form of the Borel transform is just the Laplace transform.
Read more about this topic: Nachbin's Theorem
Famous quotes containing the word transform:
“It is necessary to turn political crisis into armed crisis by performing violent actions that will force those in power to transform the military situation into a political situation. That will alienate the masses, who, from then on, will revolt against the army and the police and blame them for this state of things.”
—Carlos Marighella (d. 1969)