N-connected - n-connected Space

n-connected Space

A topological space X is said to be n-connected when it is non-empty, path-connected, and its first n homotopy groups vanish identically, that is

where the left-hand side denotes the i-th homotopy group.

The requirements of being non-empty and path-connected can be interpreted as (−1)-connected and 0-connected, respectively, which is useful in defining 0-connected and 1-connected maps, as below. The 0-th homotopy set can be defined as:

This is only a pointed set, not a group, unless X is itself a topological group; the distinguished point is the class of the trivial map, sending S0 to the base point of X. Using this set, a space is 0-connected if and only if the 0th homotopy set is the one-point set. The definition of homotopy groups and this homotopy set require that X be pointed (have a chosen base point), which cannot be done if X is empty.

A topological space X is path-connected if and only if its 0-th homotopy group vanishes identically, as path-connectedness implies that any two points x1 and x2 in X can be connected with a continuous path which starts in x1 and ends in x2, which is equivalent to the assertion that every mapping from S0 (a discrete set of two points) to X can be deformed continuously to a constant map. With this definition, we can define X to be n-connected if and only if

Read more about this topic:  N-connected

Famous quotes containing the word space:

    Time in his little cinema of the heart
    Giving a première to Hate and Pain;
    And Space urbanely keeping us apart.
    Philip Larkin (1922–1986)