Multivariate Normal Distribution - Definition

Definition

A random vector x = (X1, …, Xk)' is said to have the multivariate normal distribution if it satisfies the following equivalent conditions.

  • Every linear combination of its components Y = a1X1 + … + akXk is normally distributed. That is, for any constant vector aRk, the random variable Y = a′x has a univariate normal distribution.
  • There exists a random -vector z, whose components are independent standard normal random variables, a k-vector μ, and a k×ℓ matrix A, such that x = Az + μ. Here is the rank of the covariance matrix Σ = AA′. Especially in the case of full rank, see the section below on Geometric interpretation.
  • There is a k-vector μ and a symmetric, nonnegative-definite k×k matrix Σ, such that the characteristic function of x is
 \varphi_\mathbf{x}(\mathbf{u}) = \exp\Big( i\mathbf{u}'\boldsymbol\mu - \tfrac{1}{2} \mathbf{u}'\boldsymbol\Sigma \mathbf{u} \Big).

The covariance matrix is allowed to be singular (in which case the corresponding distribution has no density). This case arises frequently in statistics; for example, in the distribution of the vector of residuals in the ordinary least squares regression. Note also that the Xi are in general not independent; they can be seen as the result of applying the matrix A to a collection of independent Gaussian variables z.

Read more about this topic:  Multivariate Normal Distribution

Famous quotes containing the word definition:

    Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.
    The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on “life” (based on wording in the First Edition, 1935)

    Was man made stupid to see his own stupidity?
    Is God by definition indifferent, beyond us all?
    Is the eternal truth man’s fighting soul
    Wherein the Beast ravens in its own avidity?
    Richard Eberhart (b. 1904)

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)