Multipole Moment - General Mathematical Properties

General Mathematical Properties

Multipole moments in mathematics and mathematical physics form an orthogonal basis for the decomposition of a function, based on the response of a field to point sources that are brought infinitely close to each other. These can be thought of as arranged in various geometrical shapes, or, in the sense of distribution theory, as directional derivatives.

In practice, many fields can be well approximated with a finite number of multipole moments (although an infinite number may be required to reconstruct a field exactly). A typical application is to approximate the field of a localized charge distribution by its monopole and dipole terms. Problems solved once for a given order of multipole moment may be linearly combined to create a final approximate solution for a given source.

Read more about this topic:  Multipole Moment

Famous quotes containing the words general, mathematical and/or properties:

    There was not a tree as far as we could see, and that was many miles each way, the general level of the upland being about the same everywhere. Even from the Atlantic side we overlooked the Bay, and saw to Manomet Point in Plymouth, and better from that side because it was the highest.
    Henry David Thoreau (1817–1862)

    It is by a mathematical point only that we are wise, as the sailor or the fugitive slave keeps the polestar in his eye; but that is sufficient guidance for all our life. We may not arrive at our port within a calculable period, but we would preserve the true course.
    Henry David Thoreau (1817–1862)

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)