Model Topologies
Generally speaking, as the number of compartments increase, it is challenging both to find the algebraic and numerical solutions of the model. However, there are special cases of models, which rarely exist in nature, when the topologies exhibit certain regularities that the solutions become easier to find. The model can be classified according to the interconnection of cells and input/output characteristics:
- Closed model: No sinks or source, lit. all koi = 0 and ui = 0;
- Open model: There are sinks or/and sources among cells.
- Catenary model: All compartments are arranged in a chain, with each pool connecting only to its neighbors. This model has two or more cells.
- Cyclic model: It's a special case of the catenary model, with three or more cells, in which the first and last cell are connected, i.e. k1n ≠ 0 or/and kn1 ≠ 0.
- Mammillary model: Consists of a central compartment with peripheral compartments connecting to it. There are no interconnections among other compartments.
- Reducible model: It's a set of unconnected models. It bears great resemblance to the computer concept of forest as against trees.
Read more about this topic: Multi-compartment Model
Famous quotes containing the word model:
“If the man who paints only the tree, or flower, or other surface he sees before him were an artist, the king of artists would be the photographer. It is for the artist to do something beyond this: in portrait painting to put on canvas something more than the face the model wears for that one day; to paint the man, in short, as well as his features.”
—James Mcneill Whistler (18341903)