Motive (algebraic Geometry) - Explanation For Non-specialists

Explanation For Non-specialists

A commonly applied technique in mathematics is to study objects carrying a particular structure by introducing a category whose morphisms preserve this structure. Then one may ask, when are two given objects isomorphic and ask for a "particularly nice" representative in each isomorphism class. The classification of algebraic varieties, i.e. application of this idea in the case of algebraic varieties, is very difficult due to the highly non-linear structure of the objects. The relaxed question of studying varieties up to birational isomorphism has led to the field of birational geometry. Another way to handle the question is to attach to a given variety X an object of more linear nature, i.e. an object amenable to the techniques of linear algebra, for example a vector space. This "linearization" goes usually under the name of cohomology.

There are several important cohomology theories which reflect different structural aspects of varieties. The (partly conjectural) theory of motives is an attempt to find a universal way to linearize algebraic varieties, i.e. motives are supposed to provide a cohomology theory which embodies all these particular cohomologies. For example, the genus of a smooth projective curve C which is an interesting invariant of the curve, is an integer, which can be read off the dimension of the first Betti cohomology group of C. So, the motive of the curve should contain the genus information. Of course, the genus is a rather coarse invariant, so the motive of C is more than just this number.

Read more about this topic:  Motive (algebraic Geometry)

Famous quotes containing the word explanation:

    My companion assumes to know my mood and habit of thought, and we go on from explanation to explanation, until all is said that words can, and we leave matters just as they were at first, because of that vicious assumption.
    Ralph Waldo Emerson (1803–1882)