Formal Definition
If is a category, a monad on consists of a functor together with two natural transformations: (where denotes the identity functor on ) and (where is the functor from to ). These are required to fulfill the following conditions (sometimes called coherence conditions):
- (as natural transformations );
- (as natural transformations ; here denotes the identity transformation from to ).
We can rewrite these conditions using following commutative diagrams:
See the article on natural transformations for the explanation of the notations and, or see below the commutative diagrams not using these notions:
The first axiom is akin to the associativity in monoids, the second axiom to the existence of an identity element. Indeed, a monad on can alternatively be defined as a monoid in the category whose objects are the endofunctors of and whose morphisms are the natural transformations between them, with the monoidal structure induced by the composition of endofunctors.
Read more about this topic: Monad (category Theory)
Famous quotes containing the words formal and/or definition:
“That anger can be expressed through words and non-destructive activities; that promises are intended to be kept; that cleanliness and good eating habits are aspects of self-esteem; that compassion is an attribute to be prizedall these lessons are ones children can learn far more readily through the living example of their parents than they ever can through formal instruction.”
—Fred Rogers (20th century)
“Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.”
—Walter Pater (18391894)