Molecular Imprinted Polymer - Applications

Applications

Niche areas for application of MIPs are in sensors and separation. Despite the current good health of molecular imprinting in general one difficulty which appears to remain to this day is the commercialization of molecularly imprinted polymers. Even though no molecularly imprinted silica product has reached the market yet, at least several patents (123 patents, up to 2010, according to Scifinder data base), on molecular imprinting, were held by different groups. That some commercial interest existed is also confirmed by the fact that Sigma-Aldrich produces SupelMIP for Beta-agonists, Beta-blockers, pesticides and some drugs of abuse such as Amphetamine. Fast and cost-effective molecularly imprinted polymer technique has applications in many fields of chemistry, biology and engineering, particularly as an affinity material for sensors, detection of chemical, antimicrobial, and dye, residues in food, adsorbents for solid phase extraction, binding assays, artificial antibodies, chromatographic stationary phase, catalysis, drug development and screening, and byproduct removal in chemical reaction. Molecular imprinted polymers pose this wide range of capabilities in extraction through highly specific micro-cavity binding sites. Due to the specific binding site created in a MIP this technique is showing promise in analytical chemistry as a useful method for solid phase extraction. The capability for MIPs to be a cheaper easier production of antibody/enzyme like binding sites doubles the use of this technique as a valuable breakthrough in medical research and application. Such possible medical applications include "controlled release drugs, drug monitoring devices, and biological receptor mimetics". Beyond this MIPs show a promising future in the developing knowledge and application in food sciences.

"Plastic Antibodies" The binding activity of MIPs can be two magnitudes of activity lower than the use of specific antibodies. This magnitude, though lower than antibodies, are still highly specific binding sites that can be made easily and are relatively cheap. This yields a wide variety of applications for MIPs from efficient extraction to pharmaceutical/medical uses. MIP's offer many advantages over protein binding sites. Proteins are difficult and expensive to purify, denature (pH, heat, proteolysis), and are difficult to immobilize for reuse. Synthetic polymers are cheap, easy to synthesize, and allow for elaborate, synthetic side chains to be incorporated. Unique side chains allow for higher affinity, selectivity, and specificity.

Read more about this topic:  Molecular Imprinted Polymer