Formal Notation
The modus tollens rule may be written in sequent notation:
where is a metalogical symbol meaning that is a syntactic consequence of and in some logical system;
or as the statement of a functional tautology or theorem of propositional logic:
where, and are propositions expressed in some logical system;
or including assumptions:
though since the rule does not change the set of assumptions, this is not strictly necessary.
More complex rewritings involving modus tollens are often seen, for instance in set theory:
("P is a subset of Q. x is not in Q. Therefore, x is not in P.")
Also in first-order predicate logic:
("For all x if x is P then x is Q. There exists some x that is not Q. Therefore, there exists some x that is not P.")
Strictly speaking these are not instances of modus tollens, but they may be derived using modus tollens using a few extra steps.
Read more about this topic: Modus Tollens
Famous quotes containing the word formal:
“That anger can be expressed through words and non-destructive activities; that promises are intended to be kept; that cleanliness and good eating habits are aspects of self-esteem; that compassion is an attribute to be prizedall these lessons are ones children can learn far more readily through the living example of their parents than they ever can through formal instruction.”
—Fred Rogers (20th century)