Modular Representation Theory - Brauer Characters

Brauer Characters

Modular representation theory was developed by Richard Brauer from about 1940 onwards to study in greater depth the relationships between the characteristic p representation theory, ordinary character theory and structure of G, especially as the latter relates to the embedding of, and relationships between, its p-subgroups. Such results can be applied in group theory to problems not directly phrased in terms of representations.

Brauer introduced the notion now known as the Brauer character. When K is algebraically closed of positive characteristic p, there is a bijection between roots of unity in K and complex roots of unity of order prime to p. Once a choice of such a bijection is fixed, the Brauer character of a representation assigns to each group element of order coprime to p the sum of complex roots of unity corresponding to the eigenvalues (including multiplicities) of that element in the given representation.

The Brauer character of a representation determines its composition factors but not, in general, its equivalence type. The irreducible Brauer characters are those afforded by the simple modules. These are integral ( though not necessarily non-negative) combinations of the restrictions to elements of order coprime to p of the ordinary irreducible characters. Conversely, the restriction to the elements of order prime to p of each ordinary irreducible character is uniquely expressible as a non-negative integer combination of irreducible Brauer characters.

Read more about this topic:  Modular Representation Theory

Famous quotes containing the word characters:

    My characters never die screaming in rage. They attempt to pull themselves back together and go on. And that’s basically a conservative view of life.
    Jane Smiley (b. 1949)