Introduction
The modular law can be seen (and memorized) as a restricted associative law that connects the two lattice operations similarly to the way in which the associative law λ(μx) = (λμ)x for vector spaces connects multiplication in the field and scalar multiplication. The restriction x ≤ b is clearly necessary, since it follows from x ∨ (a ∧ b) = (x ∨ a) ∧ b.
It is easy to see that x ≤ b implies x ∨ (a ∧ b) ≤ (x ∨ a) ∧ b in every lattice. Therefore the modular law can also be stated as
- Modular law (variant)
- x ≤ b implies x ∨ (a ∧ b) ≥ (x ∨ a) ∧ b.
By substituting x with x ∧ b, the modular law can be expressed as an equation that is required to hold unconditionally, as follows:
- Modular identity
- (x ∧ b) ∨ (a ∧ b) = ∧ b.
This shows that, using terminology from universal algebra, the modular lattices form a subvariety of the variety of lattices. Therefore all homomorphic images, sublattices and direct products of modular lattices are again modular.
The smallest non-modular lattice is the "pentagon" lattice N5 consisting of five elements 0,1,x,a,b such that 0 < x < b < 1, 0 < a < 1, and a is not comparable to x or to b. For this lattice x ∨ (a ∧ b) = x ∨ 0 = x < b = 1 ∧ b = (x ∨ a) ∧ b holds, contradicting the modular law. Every non-modular lattice contains a copy of N5 as a sublattice.
Modular lattices are sometimes called Dedekind lattices after Richard Dedekind, who discovered the modular identity.
Read more about this topic: Modular Lattice
Famous quotes containing the word introduction:
“We used chamber-pots a good deal.... My mother ... loved to repeat: When did the queen reign over China? This whimsical and harmless scatological pun was my first introduction to the wonderful world of verbal transformations, and also a first perception that a joke need not be funny to give pleasure.”
—Angela Carter (19401992)
“My objection to Liberalism is thisthat it is the introduction into the practical business of life of the highest kindnamely, politicsof philosophical ideas instead of political principles.”
—Benjamin Disraeli (18041881)
“Do you suppose I could buy back my introduction to you?”
—S.J. Perelman, U.S. screenwriter, Arthur Sheekman, Will Johnstone, and Norman Z. McLeod. Groucho Marx, Monkey Business, a wisecrack made to his fellow stowaway Chico Marx (1931)