Modular Form

In mathematics, a modular form is a (complex) analytic function on the upper half-plane satisfying a certain kind of functional equation and growth condition. The theory of modular forms therefore belongs to complex analysis but the main importance of the theory has traditionally been in its connections with number theory. Modular forms appear in other areas, such as algebraic topology and string theory.

A modular function is a modular form, without the condition that f(z) be holomorphic at infinity. Instead, modular functions are meromorphic at infinity.

Modular form theory is a special case of the more general theory of automorphic forms, and therefore can now be seen as just the most concrete part of a rich theory of discrete groups.

Read more about Modular Form:  Modular Forms For SL2(Z), Modular Forms For More General Groups, Examples, Generalizations, History

Famous quotes containing the word form:

    ‘A thing is called by a certain name because it instantiates a certain universal’ is obviously circular when particularized, but it looks imposing when left in this general form. And it looks imposing in this general form largely because of the inveterate philosophical habit of treating the shadows cast by words and sentences as if they were separately identifiable. Universals, like facts and propositions, are such shadows.
    David Pears (b. 1921)