Minkowski Inequality - Minkowski's Integral Inequality

Minkowski's Integral Inequality

Suppose that (S11) and (S22) are two measure spaces and F : S1×S2R is measurable. Then Minkowski's integral inequality is (Stein 1970, §A.1), (Hardy, Littlewood & Pólya 1988, Theorem 202):

with obvious modifications in the case p = ∞. If p > 1, and both sides are finite, then equality holds only if |F(x,y)| = φ(x)ψ(y) a.e. for some non-negative measurable functions φ and ψ.

If μ1 is the counting measure on a two-point set S1 = {1,2}, then Minkowski's integral inequality gives the usual Minkowski inequality as a special case: for putting ƒi(y) = F(i,y) for i = 1,2, the integral inequality gives


\begin{align}
\|f_1 + f_2\|_p &= \left^{1/p} \le\int_{S_1}\left(\int_{S_2}|F(x,y)|^p\,d\mu_2(y)\right)^{1/p}d\mu_1(x)=\|f_1\|_p + \|f_2\|_p.
\end{align}

Read more about this topic:  Minkowski Inequality

Famous quotes containing the words integral and/or inequality:

    Self-centeredness is a natural outgrowth of one of the toddler’s major concerns: What is me and what is mine...? This is why most toddlers are incapable of sharing ... to a toddler, what’s his is what he can get his hands on.... When something is taken away from him, he feels as though a piece of him—an integral piece—is being torn from him.
    Lawrence Balter (20th century)

    A man willing to work, and unable to find work, is perhaps the saddest sight that fortune’s inequality exhibits under this sun.
    Thomas Carlyle (1795–1881)