Minkowski Addition - Essential Minkowski Sum

There is also a notion of the essential Minkowski sum +e of two subsets of Euclidean space. Note that the usual Minkowski sum can be written as

Thus, the essential Minkowski sum is defined by

where μ denotes the n-dimensional Lebesgue measure. The reason for the term "essential" is the following property of indicator functions: while

it can be seen that

where "ess sup" denotes the essential supremum.


Read more about this topic:  Minkowski Addition

Famous quotes containing the words essential and/or sum:

    To be a philosophical sceptic is, in a man of letters, the first and most essential to being a sound, believing Christian.
    David Hume (1711–1776)

    No, the five hundred was the sum they named
    To pay the doctor’s bill and tide me over.
    It’s that or fight, and I don’t want to fight
    I just want to get settled in my life....
    Robert Frost (1874–1963)