Microscopic Definitions of Thermodynamic Concepts
Statistical mechanics links the empirical thermodynamic properties of a system to the statistical distribution of an ensemble of microstates. All macroscopic thermodynamic properties of a system may be calculated from the partition function that sums the energy of all its microstates.
At any moment a system is distributed across an ensemble of N microstates, each denoted by i, and having a probability of occupation pi, and an energy . These microstates form a discrete set as defined by quantum statistical mechanics, and is an energy level of the system.
Read more about this topic: Microstate (statistical Mechanics)
Famous quotes containing the words microscopic, definitions and/or concepts:
“The television screen, so unlike the movie screen, sharply reduced human beings, revealed them as small, trivial, flat, in two banal dimensions, drained of color. Wasnt there something reassuring about it!that human beings were in fact merely images of a kind registered in one anothers eyes and brains, phenomena composed of microscopic flickering dots like atoms. They were atomsnothing more. A quick switch of the dial and they disappeared and who could lament the loss?”
—Joyce Carol Oates (b. 1938)
“The loosening, for some people, of rigid role definitions for men and women has shown that dads can be great at calming babiesif they take the time and make the effort to learn how. Its that time and effort that not only teaches the dad how to calm the babies, but also turns him into a parent, just as the time and effort the mother puts into the babies turns her into a parent.”
—Pamela Patrick Novotny (20th century)
“During our twenties...we act toward the new adulthood the way sociologists tell us new waves of immigrants acted on becoming Americans: we adopt the host cultures values in an exaggerated and rigid fashion until we can rethink them and make them our own. Our idea of what adults are and what were supposed to be is composed of outdated childhood concepts brought forward.”
—Roger Gould (20th century)