Microseism - Detection and Characteristics

Detection and Characteristics

Microseisms are very well detected and measured by means of a broad-band seismograph, and can be recorded anywhere on Earth.

Dominant microseism signals from the oceans are linked to characteristic ocean swell periods, and thus occur between approximately 4 to 30 seconds. Microseismic noise usually displays two predominant peaks. The weaker is for the larger periods, typically close to 16 s, and can be explained by the effect of surface gravity waves in shallow water. These microseisms have the same period as the water waves that generate them, and are usually called 'primary microseisms'. The stronger peak, for shorter periods, is also due to surface gravity waves in water, but arises from the interaction of waves with nearly equal frequencies but nearly opposite directions. These tremors have a period which is half of the water wave period and are usually called 'secondary microseisms'. A slight, but detectable, incessant excitation of the Earth's free oscillations, or normal modes, with periods in the range 30 to 1000 s are also caused by water waves, and is often referred to as the "Earth hum". This hum is probably generated like the secondary microseisms but from the interaction of infragravity waves.

As a result, from the short period 'secondary microseisms' to the long period 'hum', this seismic noise contains information on the sea states. It can be used to estimate ocean wave properties and their variation, on time scales of individual events (a few hours to a few days) to their seasonal or multi-decadal evolution. Understanding these signals, however, requires a basic understanding of the microseisms generation processes

Read more about this topic:  Microseism