Micellar Liquid Chromatography - Micelles

Micelles

Micelles are composed of surfactant, or detergent, monomers with a hydrophobic moiety, or tail, on one end, and a hydrophilic moiety, or head group, on the other. The polar head group may be anionic, cationic, zwitterionic, or non-ionic. When the concentration of a surfactant in solution reaches its critical micelle concentration (CMC), it forms micelles which are aggregates of the monomers. The CMC is different for each surfactant, as is the number of monomers which make up the micelle, termed the aggregation number (AN). Table 1 lists some common detergents used to form micelles along with their CMC and AN where available.

Table 1

Type Name CMC (mM) AN
Anionic Cholic acid, sodium salt 14 2-4
Deoxycholic acid, sodium salt 5 4-10
Glycocholic acid, sodium salt 13 2
Sodium dodecyl sulfate (SDS) 8.27 62
Taurocholic acid, sodium salt 10-15 4
Sodium tetradecyl sulfate 2.1
Cationic Cetyltrimethylammonium chloride 1
Cetyltrimethylammonium bromide (CTAB) 1.3 78
Dodecyltrimethlyammonium bromide (DTAB) 14 50
Hexadecyltrimethylammonium bromide 0.026 169
Zwitterionic 3--1-propanesulfonate (CHAPS) 8 10
3--2-hydroxy-1-propanesulfonate (CHAPSO) 8 11
N-Dodecyl-N,N-dimethylammonio-3-propane sulfonate 3.3
Nonionic n-Decyl-b-D-glucopyranoside 2.2
Triton X-100 0.24 140
Polyoxyethylene (23) dodecanol (BRIJ 35) 0.1
Polyoxyethylene -sorbitane monooleate (Tween 80) 0.01
Polyoxyethylene -sorbitane monolaurate (Tween 20) 0.059

Many of the characteristics of micelles differ from those of bulk solvents. For example, the micelles are, by nature, spatially heterogeneous with a hydrocarbon, nearly anhydrous core and a highly solvated, polar head group. They have a high surface-to-volume ratio due to their small size and generally spherical shape. Their surrounding environment (pH, ionic strength, buffer ion, presence of a co-solvent, and temperature) has an influence on their size, shape, critical micelle concentration, aggregation number and other properties.

Another important property of micelles is the Kraft point, the temperature at which the solubility of the surfactant is equal to its CMC. For HPLC applications involving micelles, it is best to choose a surfactant with a low Kraft point and CMC. A high CMC would require a high concentration of surfactant which would increase the viscosity of the mobile phase, an undesirable condition. Additionally, a Kraft point should be well below room temperature to avoid having to apply heat to the mobile phase. To avoid potential interference with absorption detectors, a surfactant should also have a small molar absorptivity at the chosen wavelength of analysis. Light scattering should not be a concern due to the small size, a few nanometers, of the micelle.

The effect of organic additives on micellar properties is another important consideration. A small amount of organic solvent is often added to the mobile phase to help improve efficiency and to improve separations of compounds. Care needs to be taken when determining how much organic to add. Too high a concentration of the organic may cause the micelle to disperse, as it relies on hydrophobic effects for its formation. The maximum concentration of organic depends on the organic solvent itself, and on the micelle. This information is generally not known precisely, but a generally accepted practice is to keep the volume percentage of organic below 15-20%.

Read more about this topic:  Micellar Liquid Chromatography