Micellar Liquid Chromatography - Applications

Applications

Despite the reduced efficiency verses reversed phase HPLC, hundreds of applications have been reported using MLC. One of the most advantageous is the ability to directly inject physiological fluids. Micelles have an ability to solubilize proteins which enables MLC to be useful in analyzing untreated biological fluids such as plasma, serum, and urine. Martinez et al. found MLC to be highly useful in analyzing a class of drugs called b-antagonists, so called beta-blockers, in urine samples. The main advantage of the use of MLC with this type of sample, is the great time savings in sample preparation. Alternative methods of analysis including reversed phase HPLC require lengthy extraction and sample work up procedures before analysis can begin. With MLC, direct injection is often possible, with retention times of less than 15 minutes for the separation of up to nine b-antagonists.

Another application compared reversed phase HPLC with MLC for the analysis of desferrioxamine in serum. Desferrioxamine (DFO) is a commonly used drug for removal of excess iron in patients with chronic and acute levels. The analysis of DFO along with its chelated complexes, Fe(III) DFO and Al(III) DFO has proven to be difficult at best in previous attempts. This study found that direct injection of the serum was possible for MLC, verses an ultrafiltration step necessary in HPLC. This analysis proved to have difficulties with the separation of the chelated DFO compounds and with the sensitivity levels for DFO itself when MLC was applied. The researcher found that, in this case, reverse phase HPLC, was a better, more sensitive technique despite the time savings in direct injection.

Analysis of pharmaceuticals by MLC is also gaining popularity. The selectivity and peak shape of MLC over commonly used ion-pair chromatography is much enhanced. MLC mimics, yet enhances, the selectivity offered by ion-pairing reagents for the separation of active ingredients in pharmaceutical drugs. For basic drugs, MLC improves the excessive peak tailing frequently observed in ion-pairing. Hydrophilic drugs are often unretained using conventional HPLC, are retained by MLC due to solubilization into the micelles. Commonly found drugs in cold medications such as acetaminophen, L-ascorbic acid, phenylpropanolamine HCL, tipepidine hibenzate, and chlorpheniramine maleate have been successfully separated with good peak shape using MLC. Additional basic drugs like many narcotics, such as codeine and morphine, have also been successfully separated using MLC.

Another novel application of MLC involves the separation and analysis of inorganic compounds, mostly simple ions. This is a relatively new area for MLC, but has seen some promising results. MLC has been observed to provide better selectivity of inorganic ions that ion-exchange or ion-pairing chromatography. While this application is still in the beginning stages of development, the possibilities exist for novel, much enhanced separations of inorganic species.

Since the technique was first reported on in 1980, micellar liquid chromatography has been used in hundreds of applications. This micelle controlled technique provides for unique opportunities for solving complicated separation problems. Despite the poor efficiency of MLC, it has been successfully used in many applications. The use of MLC in the future appears to be extremely advantages in the areas of physiological fluids, pharmaceuticals, and even inorganic ions. The technique has proven to be superior over ion-pairing and ion-exchange for many applications. As new approaches are developed to combat the poor efficiency of MLC, its application is sure to spread and gain more acceptance.

Read more about this topic:  Micellar Liquid Chromatography