Metric Space - Product Metric Spaces

Product Metric Spaces

If are metric spaces, and N is the Euclidean norm on Rn, then is a metric space, where the product metric is defined by

and the induced topology agrees with the product topology. By the equivalence of norms in finite dimensions, an equivalent metric is obtained if N is the taxicab norm, a p-norm, the max norm, or any other norm which is non-decreasing as the coordinates of a positive n-tuple increase (yielding the triangle inequality).

Similarly, a countable product of metric spaces can be obtained using the following metric

An uncountable product of metric spaces need not be metrizable. For example, is not first-countable and thus isn't metrizable.

Read more about this topic:  Metric Space

Famous quotes containing the words product and/or spaces:

    The guys who fear becoming fathers don’t understand that fathering is not something perfect men do, but something that perfects the man. The end product of child raising is not the child but the parent.
    Frank Pittman (20th century)

    Every true man is a cause, a country, and an age; requires infinite spaces and numbers and time fully to accomplish his design;—and posterity seem to follow his steps as a train of clients.
    Ralph Waldo Emerson (1803–1882)