Effects On Performance
Increasing storage density of a medium almost always improves the transfer speed at which that medium can operate. This is most obvious when considering various disk-based media, where the storage elements are spread over the surface of the disk and must be physically rotated under the "head" in order to be read or written. Higher density means more data moves under the head for any given mechanical movement.
Considering the floppy disk as a basic example, we can calculate the effective transfer speed by determining how fast the bits move under the head. A standard 3½" floppy disk spins at 300 rpm, and the innermost track about 66 mm long (10.5 mm radius). At 300 rpm the linear speed of the media under the head is thus about 66 mm x 300 rpm = 19800 mm/minute, or 330 mm/s. Along that track the bits are stored at a density of 686 bit/mm, which means that the head sees 686 bit/mm x 330 mm/s = 226,380 bit/s (or 28.3 KiB/s).
Now consider an improvement to the design that doubles the density of the bits by reducing sample length and keeping the same track spacing. This would immediately result in a doubling of transfer speed because the bits would be passing under the head twice as fast. Early floppy disk interfaces were originally designed with 250 kbit/s transfer speeds in mind, and were already being outperformed with the introduction of the "high density" 1.44 MB (1,440 KiB) floppies in the 1980s. The vast majority of PCs included interfaces designed for high density drives that ran at 500 kbit/s instead. These too were completely overwhelmed by newer devices like the LS-120, which were forced to use higher-speed interfaces such as IDE.
Although the effect on performance is most obvious on rotating media, similar effects come into play even for solid-state media like Flash RAM or DRAM. In this case the performance is generally defined by the time it takes for the electrical signals to travel though the computer bus to the chips, and then through the chips to the individual "cells" used to store data (each cell holds one bit).
One defining electrical property is the resistance of the wires inside the chips. As the cell size decreases, through the improvements in semiconductor fabrication that lead to Moore's Law, the resistance is reduced and less power is needed to operate the cells. This, in turn, means that less electrical current is needed for operation, and thus less time is needed to send the required amount of electrical charge into the system. In DRAM in particular the amount of charge that needs to be stored in a cell's capacitor also directly affects this time.
As fabrication has improved, solid-state memory has improved dramatically in terms of performance. Modern DRAM chips had operational speeds on the order of 10 ns or less. A less obvious effect is that as density improves, the number of DIMMs needed to supply any particular amount of memory decreases, which in turn means less DIMMs overall in any particular computer. This often leads to improved performance as well, as there is less bus traffic. However, this effect is generally not linear.
Read more about this topic: Memory Storage Density
Famous quotes containing the words effects and/or performance:
“One of the effects of a safe and civilised life is an immense oversensitiveness which makes all the primary emotions somewhat disgusting. Generosity is as painful as meanness, gratitude as hateful as ingratitude.”
—George Orwell (19031950)
“The child to be concerned about is the one who is actively unhappy, [in school].... In the long run, a childs emotional development has a far greater impact on his life than his school performance or the curriculums richness, so it is wise to do everything possible to change a situation in which a child is suffering excessively.”
—Dorothy H. Cohen (20th century)