Relationship Between The G-function and The Generalized Hypergeometric Function
If the integral converges when evaluated along the second path introduced above, and if no confluent poles appear among the Γ(bj − s), j = 1, 2, ..., m, then the Meijer G-function can be expressed as a sum of residues in terms of generalized hypergeometric functions pFq−1 (Slater's theorem):
For the integral to converge along the second path one must have either p < q, or p = q and |z| < 1, and for the poles to be distinct no pair among the bj, j = 1, 2, ..., m, may differ by an integer or zero. The asterisks in the relation remind us to ignore the contribution with index j = h as follows: In the product this amounts to replacing Γ(0) with 1, and in the argument of the hypergeometric function, if we recall the meaning of the vector notation,
this amounts to shortening the vector length from q to q−1.
Note that when m = 0, the second path does not contain any pole, and so the integral must vanish identically,
if either p < q, or p = q and |z| < 1.
Similarly, if the integral converges when evaluated along the third path above, and if no confluent poles appear among the Γ(1 − ak + s), k = 1, 2, ..., n, then the G-function can be expressed as:
For this, either p > q, or p = q and |z| > 1 are required, and no pair among the ak, k = 1, 2, ..., n, may differ by an integer or zero. For n = 0 one consequently has:
if either p > q, or p = q and |z| > 1.
On the other hand, any generalized hypergeometric function can readily be expressed in terms of the Meijer G-function:
where we have made use of the vector notation:
This holds unless a nonpositive integer value of at least one of its parameters ap reduces the hypergeometric function to a finite polynomial, in which case the gamma prefactor of either G-function vanishes and the parameter sets of the G-functions violate the requirement ak − bj ≠ 1, 2, 3, ... for k = 1, 2, ..., n and j = 1, 2, ..., m from the definition above. Apart from this restriction, the relationship is valid whenever the generalized hypergeometric series pFq(z) converges, i. e. for any finite z when p ≤ q, and for |z| < 1 when p = q + 1. In the latter case, the relation with the G-function automatically provides the analytic continuation of pFq(z) to |z| ≥ 1 with a branch cut from 1 to ∞ along the real axis. Finally, the relation furnishes a natural extension of the definition of the hypergeometric function to orders p > q + 1. By means of the G-function we can thus solve the generalized hypergeometric differential equation for p > q + 1 as well.
Read more about this topic: Meijer G-function
Famous quotes containing the words relationship between, relationship, generalized and/or function:
“We must introduce a new balance in the relationship between the individual and the governmenta balance that favors greater individual freedom and self-reliance.”
—Gerald R. Ford (b. 1913)
“Friendship is by its very nature freer of deceit than any other relationship we can know because it is the bond least affected by striving for power, physical pleasure, or material profit, most liberated from any oath of duty or of constancy.”
—Francine Du Plesssix Gray (20th century)
“One is conscious of no brave and noble earnestness in it, of no generalized passion for intellectual and spiritual adventure, of no organized determination to think things out. What is there is a highly self-conscious and insipid correctness, a bloodless respectability submergence of matter in mannerin brief, what is there is the feeble, uninspiring quality of German painting and English music.”
—H.L. (Henry Lewis)
“It is not the function of our Government to keep the citizen from falling into error; it is the function of the citizen to keep the Government from falling into error.”
—Robert H. [Houghwout] Jackson (18921954)