Megaspore - Megagametogenesis

Megagametogenesis

After megasporogenesis, the megaspore develops into the female gametophyte (the embryo sac) in a process called megagametogenesis. The process of megagametogenesis varies depending on which pattern of megasporogenesis occurred. Some species, such as Tridax trilobata, Ehretia laevis, and Alectra thomsoni, can undergo different patterns of megasporogenesis and therefore different patterns of megagametogenesis. If the monosporic pattern occurred, the single nucleus undergoes mitosis three times, producing an eight-nucleate cell. These eight nuclei are arranged into two groups of four. These groups both send a nucleus to the center of the cell; these become the polar nuclei. Depending on the species, these nuclei fuse together before or upon fertilization of the central cell. The three nuclei at the end of the cell near the micropylar become the egg apparatus, with an egg cell in the center and two synergids. At the other end of the cell, a cell wall forms around the nuclei and forms the antipodals. Therefore the resulting embryo sac is a seven-celled structure consisting of one central cell, one egg cell, two synergid cells, and three antipodal cells.

The bisporic and tetrasporic patterns undergo varying processes and result in varying embryo sacs as well. In Lilium which has a tetrasporic pattern, the central cell of the embryo sac is 4N. Therefore, upon fertilization the endosperm will be 5N rather than the typical 3N.

Read more about this topic:  Megaspore