Median Graph - 2-satisfiability

2-satisfiability

Median graphs have a close connection to the solution sets of 2-satisfiability problems that can be used both to characterize these graphs and to relate them to adjacency-preserving maps of hypercubes.

A 2-satisfiability instance consists of a collection of Boolean variables and a collection of clauses, constraints on certain pairs of variables requiring those two variables to avoid certain combinations of values. Usually such problems are expressed in conjunctive normal form, in which each clause is expressed as a disjunction and the whole set of constraints is expressed as a conjunction of clauses, such as

A solution to such an instance is an assignment of truth values to the variables that satisfies all the clauses, or equivalently that causes the conjunctive normal form expression for the instance to become true when the variable values are substituted into it. The family of all solutions has a natural structure as a median algebra, where the median of three solutions is formed by choosing each truth value to be the majority function of the values in the three solutions; it is straightforward to verify that this median solution cannot violate any of the clauses. Thus, these solutions form a median graph, in which the neighbor of each solution is formed by negating a set of variables that are all constrained to be equal or unequal to each other.

Conversely, every median graph G may be represented in this way as the solution set to a 2-satisfiability instance. To find such a representation, create a 2-satisfiability instance in which each variable describes the orientation of one of the edges in the graph (an assignment of a direction to the edge causing the graph to become directed rather than undirected) and each constraint allows two edges to share a pair of orientations only when there exists a vertex v such that both orientations lie along shortest paths from other vertices to v. Each vertex v of G corresponds to a solution to this 2-satisfiability instance in which all edges are directed towards v. Each solution to the instance must come from some vertex v in this way, where v is the common intersection of the sets Wuw for edges directed from w to u; this common intersection exists due to the Helly property of the sets Wuw. Therefore, the solutions to this 2-satisfiability instance correspond one-for-one with the vertices of G.

Read more about this topic:  Median Graph