Measure (mathematics) - Non-measurable Sets

Non-measurable Sets

If the axiom of choice is assumed to be true, not all subsets of Euclidean space are Lebesgue measurable; examples of such sets include the Vitali set, and the non-measurable sets postulated by the Hausdorff paradox and the Banach–Tarski paradox.

Read more about this topic:  Measure (mathematics)

Famous quotes containing the word sets:

    There be some sports are painful, and their labor
    Delight in them sets off. Some kinds of baseness
    Are nobly undergone, and most poor matters
    Point to rich ends.
    William Shakespeare (1564–1616)