A Simple Application
Assume that f is a continuous, real-valued function, defined on an arbitrary interval I of the real line. If the derivative of f at every interior point of the interval I exists and is zero, then f is constant.
Proof: Assume the derivative of f at every interior point of the interval I exists and is zero. Let (a, b) be an arbitrary open interval in I. By the mean value theorem, there exists a point c in (a,b) such that
This implies that f(a) = f(b). Thus, f is constant on the interior of I and thus is constant on I by continuity. (See below for a multivariable version of this result.)
Remarks:
- Only continuity of ƒ, not differentiability, is needed at the endpoints of the interval I. No hypothesis of continuity needs to be stated if I is an open interval, since the existence of a derivative at a point implies the continuity at this point. (See the section continuity and differentiability of the article derivative.)
- The differentiability of ƒ can be relaxed to one-sided differentiability, a proof given in the article on semi-differentiability.
Read more about this topic: Mean Value Theorem
Famous quotes containing the words simple and/or application:
“Chaucer sawed life in half and out tumbled hundreds of unpremeditated lives, because he didnt have the cast-iron grid of a priori coherence that makes reading Goethe, Shakespeare, or Dante an exercise in searching for signs of life among the conventions, compulsions, self-justifications, proofs, wise saws, simple but powerful messages, and poetry.”
—Marvin Mudrick (19211986)
“The application requisite to the duties of the office I hold [governor of Virginia] is so excessive, and the execution of them after all so imperfect, that I have determined to retire from it at the close of the present campaign.”
—Thomas Jefferson (17431826)