Maze Generation Algorithm - Cellular Automaton Algorithms

Cellular Automaton Algorithms

Certain types of cellular automata can be used to generate mazes. Two well-known such cellular automata, Maze and Mazectric, have rulestrings B3/S12345 and B3/S1234. In the former, this means that cells survive from one generation to the next if they have at least one and at most five neighbours. In the latter, this means that cells survive if they have one to four neighbours. If a cell has exactly three neighbours, it is born. It is similar to Conway's Game of Life in that patterns that do not have a living cell adjacent to 1, 4, or 5 other living cells in any generation will behave identically to it. However, for large patterns, it behaves very differently.

For a random starting pattern, these maze-generating cellular automata will evolve into complex mazes with well-defined walls outlining corridors. Mazecetric, which has the rule B3/S1234 has a tendency to generate longer and straighter corridors compared with Maze, with the rule B3/S12345. Since these cellular automaton rules are deterministic, each maze generated is uniquely determined by its random starting pattern. This is a significant drawback since the mazes tend to be relatively predictable.

Like some of the graph-theory based methods described above, these cellular automata typically generate mazes from a single starting pattern; hence it will usually be relatively easy to find the way to the starting cell, but harder to find the way anywhere else.

Read more about this topic:  Maze Generation Algorithm