Maximum Power Principle - Philosophy and Theory

Philosophy and Theory

Lotka said (1922b: 151):

The principle of natural selection reveals itself as capable of yielding information which the first and second laws of thermodynamics are not competent to furnish. The two fundamental laws of thermodynamics are, of course, insufficient to determine the course of events in a physical system. They tell us that certain things cannot happen, but they do not tell us what does happen.

Gilliland noted that these difficulties in analysis in turn required some new theory to adequately explain the interactions and transactions of these different energies (different concentrations of fuels, labour and environmental forces). Gilliland (Gilliland 1978, p. 101) suggested that Odum's statement of the maximum power principle (H.T.Odum 1978, pp. 54–87) was, perhaps, an adequate expression of the requisite theory:

That theory, as it is expressed by the maximum power principle, addresses the empirical question of why systems of any type or size organize themselves into the patterns observed. Such a question assumes that physical laws govern system function. It does not assume, for example, that the system comprising economic production is driven by consumers; rather that the whole cycle of production-consumption is structured and driven by physical laws.

This theory Odum called maximum power theory. In order to formulate maximum power theory Gilliland observed that Odum had added another law (the maximum power principle) to the already well established laws of thermodynamics. In 1978 Gilliland wrote that Odum's new law had not yet been validated (Gilliland 1978, p. 101). Gilliland stated that in maximum power theory the second law efficiency of thermodynamics required an additional physical concept: "the concept of second law efficiency under maximum power" (Gilliland 1978, p. 101):

Neither the first or second law of thermodynamics include a measure of the rate at which energy transformations or processes occur. The concept of maximum power incorporates time into measures of energy transformations. It provides information about the rate at which one kind of energy is transformed into another as well as the efficiency of that transformation.

In this way the concept of maximum power was being used as a principle to quantitatively describe the selective law of biological evolution. Perhaps H.T.Odum's most concise statement of this view was (1970, p. 62):

Lotka provided the theory of natural selection as a maximum power organizer; under competitive conditions systems are selected which use their energies in various structural-developing actions so as to maximize their use of available energies. By this theory systems of cycles which drain less energy lose out in comparative development. However Leopold and Langbein have shown that streams in developing erosion profiles, meander systems, and tributary networks disperse their potential energies more slowly than if their channels were more direct. These two statements might be harmonized by an optimum efficiency maximum power principle (Odum and Pinkerton 1955), which indicates that energies which are converted too rapidly into heat are not made available to the systems own use because they are not fed back through storages into useful pumping, but instead do random stirring of the environment.

The Odum–Pinkerton approach to Lotka's proposal was to apply Ohm's law – and the associated maximum power theorem (a result in electrical power systems) – to ecological systems. Odum and Pinkerton defined "power" in electronic terms as the rate of work, where Work is understood as a "useful energy transformation". The concept of maximum power can therefore be defined as the maximum rate of useful energy transformation. Hence the underlying philosophy aims to unify the theories and associated laws of electronic and thermodynamic systems with biological systems. This approach presupposed an analogical view which sees the world as an ecological-electronic-economic engine.

Read more about this topic:  Maximum Power Principle

Famous quotes containing the words philosophy and/or theory:

    Histories make men wise; poets witty; the mathematics subtle; natural philosophy deep; moral grave; logic and rhetoric able to contend.
    Francis Bacon (1561–1626)

    We commonly say that the rich man can speak the truth, can afford honesty, can afford independence of opinion and action;—and that is the theory of nobility. But it is the rich man in a true sense, that is to say, not the man of large income and large expenditure, but solely the man whose outlay is less than his income and is steadily kept so.
    Ralph Waldo Emerson (1803–1882)