Maximal Arc - Definition

Definition

Let be a finite projective plane of order q (not necessarily desarguesian). Maximal arcs of degree d ( 2 ≤ dq- 1) are (k,d)-arcs in, where k is maximal with respect to the parameter d, in other words, k = qd + d - q.

Equivalently, one can define maximal arcs of degree d in as non-empty sets of points K such that every line intersects the set either in 0 or d points.

Some authors permit the degree of a maximal arc to be 1, q or even q+ 1. Letting K be a maximal (k, d)-arc in a projective plane of order q, if

  • d = 1, K is a point of the plane,
  • d = q, K is the complement of a line (an affine plane of order q), and
  • d = q + 1, K is the entire projective plane.

All of these cases are considered to be trivial examples of maximal arcs, existing in any type of projective plane for any value of q. When 2 ≤ dq- 1, the maximal arc is called non-trivial, and the definition given above and the properties listed below all refer to non-trivial maximal arcs.

Read more about this topic:  Maximal Arc

Famous quotes containing the word definition:

    Mothers often are too easily intimidated by their children’s negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.
    Elaine Heffner (20th century)

    Was man made stupid to see his own stupidity?
    Is God by definition indifferent, beyond us all?
    Is the eternal truth man’s fighting soul
    Wherein the Beast ravens in its own avidity?
    Richard Eberhart (b. 1904)

    Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.
    The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on “life” (based on wording in the First Edition, 1935)