Matrix (mathematics) - Linear Transformations

Matrices and matrix multiplication reveal their essential features when related to linear transformations, also known as linear maps. A real m-by-n matrix A gives rise to a linear transformation RnRm mapping each vector x in Rn to the (matrix) product Ax, which is a vector in Rm. Conversely, each linear transformation f: RnRm arises from a unique m-by-n matrix A: explicitly, the (i, j)-entry of A is the ith coordinate of f(ej), where ej = (0,...,0,1,0,...,0) is the unit vector with 1 in the jth position and 0 elsewhere. The matrix A is said to represent the linear map f, and A is called the transformation matrix of f.

For example, the 2×2 matrix


\mathbf A = \begin{bmatrix} a & c\\b & d \end{bmatrix}\,

can be viewed as the transform of the unit square into a parallelogram with vertices at (0, 0), (a, b), (a + c, b + d), and (c, d). The parallelogram pictured at the right is obtained by multiplying A with each of the column vectors and in turn. These vectors define the vertices of the unit square.

The following table shows a number of 2-by-2 matrices with the associated linear maps of R2. The blue original is mapped to the green grid and shapes. The origin (0,0) is marked with a black point.

Horizontal shear with m=1.25. Horizontal flip Squeeze mapping with r=3/2 Scaling by a factor of 3/2 Rotation by π/6R = 30°
\begin{bmatrix}
1 & 1.25 \\
0 & 1 \end{bmatrix} \begin{bmatrix}
-1 & 0 \\
0 & 1 \end{bmatrix} \begin{bmatrix}
3/2 & 0 \\
0 & 2/3 \end{bmatrix} \begin{bmatrix}
3/2 & 0 \\
0 & 3/2 \end{bmatrix}

Under the 1-to-1 correspondence between matrices and linear maps, matrix multiplication corresponds to composition of maps: if a k-by-m matrix B represents another linear map g : RmRk, then the composition gf is represented by BA since

(gf)(x) = g(f(x)) = g(Ax) = B(Ax) = (BA)x.

The last equality follows from the above-mentioned associativity of matrix multiplication.

The rank of a matrix A is the maximum number of linearly independent row vectors of the matrix, which is the same as the maximum number of linearly independent column vectors. Equivalently it is the dimension of the image of the linear map represented by A. The rank-nullity theorem states that the dimension of the kernel of a matrix plus the rank equals the number of columns of the matrix.

Read more about this topic:  Matrix (mathematics)