Deconstructed Example of A Matrix Ordinary Differential Equation
A first-order homogeneous matrix ordinary differential equation in two functions x(t) and y(t), when taken out of matrix form, has the following form:
where and may be any arbitrary scalars.
Higher order matrix ODE's may possess a much more complicated form.
Read more about this topic: Matrix Differential Equation
Famous quotes containing the words matrix, ordinary, differential and/or equation:
“The matrix is God?
In a manner of speaking, although it would be more accurate ... to say that the matrix has a God, since this beings omniscience and omnipotence are assumed to be limited to the matrix.
If it has limits, it isnt omnipotent.
Exactly.... Cyberspace exists, insofar as it can be said to exist, by virtue of human agency.”
—William Gibson (b. 1948)
“I have great faith in ordinary parents. Who has a childs welfare more at heart than his ordinary parent? Its been my experience that when parents are given the skills to be more helpful, not only are they able to use these skills, but they infuse them with a warmth and a style that is uniquely their own.”
—Haim Ginott (20th century)
“But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.”
—Antonin Artaud (18961948)
“A nation fights well in proportion to the amount of men and materials it has. And the other equation is that the individual soldier in that army is a more effective soldier the poorer his standard of living has been in the past.”
—Norman Mailer (b. 1923)