Matrix Addition - Direct Sum

Direct Sum

Another operation, which is used less often, is the direct sum (denoted by ⊕). Note the Kronecker sum is also denoted ⊕; the context should make the usage clear. The direct sum of any pair of matrices A of size m × n and B of size p × q is a matrix of size (m + p) × (n + q) defined as

 \bold{A} \oplus \bold{B} = \begin{bmatrix} \bold{A} & \boldsymbol{0} \\ \boldsymbol{0} & \bold{B} \end{bmatrix} = \begin{bmatrix} a_{11} & \cdots & a_{1n} & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & \cdots & a_{mn} & 0 & \cdots & 0 \\ 0 & \cdots & 0 & b_{11} & \cdots & b_{1q} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & b_{p1} & \cdots & b_{pq} \end{bmatrix}

For instance,

 \begin{bmatrix} 1 & 3 & 2 \\ 2 & 3 & 1 \end{bmatrix}
\oplus \begin{bmatrix} 1 & 6 \\ 0 & 1 \end{bmatrix}
= \begin{bmatrix} 1 & 3 & 2 & 0 & 0 \\ 2 & 3 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}

The direct sum of matrices is a special type of block matrix, in particular the direct sum of square matrices is a block diagonal matrix.

The adjacency matrix of the union of disjoint graphs or multigraphs is the direct sum of their adjacency matrices. Any element in the direct sum of two vector spaces of matrices can be represented as a direct sum of two matrices.

In general, the direct sum of n matrices is:


\bigoplus_{i=1}^{n} \bold{A}_{i} = {\rm diag}( \bold{A}_1, \bold{A}_2, \bold{A}_3 \cdots \bold{A}_n)=
\begin{bmatrix} \bold{A}_1 & \boldsymbol{0} & \cdots & \boldsymbol{0} \\ \boldsymbol{0} & \bold{A}_2 & \cdots & \boldsymbol{0} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{0} & \boldsymbol{0} & \cdots & \bold{A}_n \\
\end{bmatrix}\,\!

where the zeros are actually blocks of zeros, i.e. zero matricies.

NB: Sometimes in this context, boldtype for matrices is dropped, matricies are written in italic.

Read more about this topic:  Matrix Addition

Famous quotes containing the words direct and/or sum:

    The frequency of personal questions grows in direct proportion to your increasing girth. . . . No one would ask a man such a personally invasive question as “Is your wife having natural childbirth or is she planning to be knocked out?” But someone might ask that of you. No matter how much you wish for privacy, your pregnancy is a public event to which everyone feels invited.
    Jean Marzollo (20th century)

    To die proudly when it is no longer possible to live proudly. Death freely chosen, death at the right time, brightly and cheerfully accomplished amid children and witnesses: then a real farewell is still possible, as the one who is taking leave is still there; also a real estimate of what one has wished, drawing the sum of one’s life—all in opposition to the wretched and revolting comedy that Christianity has made of the hour of death.
    Friedrich Nietzsche (1844–1900)