Direct Sum
Another operation, which is used less often, is the direct sum (denoted by ⊕). Note the Kronecker sum is also denoted ⊕; the context should make the usage clear. The direct sum of any pair of matrices A of size m × n and B of size p × q is a matrix of size (m + p) × (n + q) defined as
For instance,
The direct sum of matrices is a special type of block matrix, in particular the direct sum of square matrices is a block diagonal matrix.
The adjacency matrix of the union of disjoint graphs or multigraphs is the direct sum of their adjacency matrices. Any element in the direct sum of two vector spaces of matrices can be represented as a direct sum of two matrices.
In general, the direct sum of n matrices is:
where the zeros are actually blocks of zeros, i.e. zero matricies.
NB: Sometimes in this context, boldtype for matrices is dropped, matricies are written in italic.
Read more about this topic: Matrix Addition
Famous quotes containing the words direct and/or sum:
“I, who travel most often for my pleasure, do not direct myself so badly. If it looks ugly on the right, I take the left; if I find myself unfit to ride my horse, I stop.... Have I left something unseen behind me? I go back; it is still on my road. I trace no fixed line, either straight or crooked.”
—Michel de Montaigne (15331592)
“Genius is no more than childhood recaptured at will, childhood equipped now with mans physical means to express itself, and with the analytical mind that enables it to bring order into the sum of experience, involuntarily amassed.”
—Charles Baudelaire (18211867)