Proof of Mathematical Induction
The principle of mathematical induction is usually stated as an axiom of the natural numbers; see Peano axioms. However, it can be proved in some logical systems. For instance, it can be proved if one assumes:
- The set of natural numbers is well-ordered.
- Every natural number is either zero, or n+1 for some natural number n.
- For any natural number n, n+1 is greater than n.
To derive simple induction from these axioms, we must show that if P(n) is some proposition predicated of n, and if:
- P(0) holds and
- whenever P(k) is true then P(k+1) is also true
then P(n) holds for all n.
Proof. Let S be the set of all natural numbers for which P(n) is false. Let us see what happens if we assert that S is nonempty. Well-ordering tells us that S has a least element, say t. Moreover, since P(0) is true, t is not 0. Since every natural number is either zero or some n+1, there is some natural number n such that n+1=t. Now n is less than t, and t is the least element of S. It follows that n is not in S, and so P(n) is true. This means that P(n+1) is true, and so P(t) is true. This is a contradiction, since t was in S. Therefore, S is empty.
It can also be proved that induction, given the other axioms, implies well-ordering.
Read more about this topic: Mathematical Induction
Famous quotes containing the words proof of, proof, mathematical and/or induction:
“A short letter to a distant friend is, in my opinion, an insult like that of a slight bow or cursory salutationa proof of unwillingness to do much, even where there is a necessity of doing something.”
—Samuel Johnson (17091784)
“It comes to pass oft that a terrible oath, with a swaggering accent sharply twanged off, gives manhood more approbation than ever proof itself would have earned him.”
—William Shakespeare (15641616)
“What is history? Its beginning is that of the centuries of systematic work devoted to the solution of the enigma of death, so that death itself may eventually be overcome. That is why people write symphonies, and why they discover mathematical infinity and electromagnetic waves.”
—Boris Pasternak (18901960)
“One might get the impression that I recommend a new methodology which replaces induction by counterinduction and uses a multiplicity of theories, metaphysical views, fairy tales, instead of the customary pair theory/observation. This impression would certainly be mistaken. My intention is not to replace one set of general rules by another such set: my intention is rather to convince the reader that all methodologies, even the most obvious ones, have their limits.”
—Paul Feyerabend (19241994)