Proof of Mathematical Induction
The principle of mathematical induction is usually stated as an axiom of the natural numbers; see Peano axioms. However, it can be proved in some logical systems. For instance, it can be proved if one assumes:
- The set of natural numbers is well-ordered.
- Every natural number is either zero, or n+1 for some natural number n.
- For any natural number n, n+1 is greater than n.
To derive simple induction from these axioms, we must show that if P(n) is some proposition predicated of n, and if:
- P(0) holds and
- whenever P(k) is true then P(k+1) is also true
then P(n) holds for all n.
Proof. Let S be the set of all natural numbers for which P(n) is false. Let us see what happens if we assert that S is nonempty. Well-ordering tells us that S has a least element, say t. Moreover, since P(0) is true, t is not 0. Since every natural number is either zero or some n+1, there is some natural number n such that n+1=t. Now n is less than t, and t is the least element of S. It follows that n is not in S, and so P(n) is true. This means that P(n+1) is true, and so P(t) is true. This is a contradiction, since t was in S. Therefore, S is empty.
It can also be proved that induction, given the other axioms, implies well-ordering.
Read more about this topic: Mathematical Induction
Famous quotes containing the words proof of, proof, mathematical and/or induction:
“There is no better proof of a mans being truly good than his desiring to be constantly under the observation of good men.”
—François, Duc De La Rochefoucauld (16131680)
“If any proof were needed of the progress of the cause for which I have worked, it is here tonight. The presence on the stage of these college women, and in the audience of all those college girls who will some day be the nations greatest strength, will tell their own story to the world.”
—Susan B. Anthony (18201906)
“The circumstances of human society are too complicated to be submitted to the rigour of mathematical calculation.”
—Marquis De Custine (17901857)
“They relieve and recommend each other, and the sanity of society is a balance of a thousand insanities. She punishes abstractionists, and will only forgive an induction which is rare and casual.”
—Ralph Waldo Emerson (18031882)