Definition
The material derivatives of a scalar field φ( x, t ) and a vector field u( x, t ) are defined respectively as:
where the distinction is that is the gradient of a scalar, while is the covariant derivative of a vector. In case of the material derivative of a vector field, the term v•∇u can both be interpreted as v•(∇u) involving the tensor derivative of u, or as (v•∇)u, leading to the same result.
Confusingly, the term convective derivative is both used for the whole material derivative Dφ/Dt or Du/Dt, and for only the spatial rate of change part, v•∇φ or v•∇u respectively. For that case, the convective derivative only equals D/Dt for time independent flows.
These derivatives are physical in nature and describe the transport of a scalar or vector quantity in a velocity field v( x, t ). The effect of the time independent terms in the definitions are for the scalar and vector case respectively known as advection and convection.
Read more about this topic: Material Derivative
Famous quotes containing the word definition:
“Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.”
—The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on life (based on wording in the First Edition, 1935)
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)