Matching (graph Theory) - Properties

Properties

In any graph without isolated vertices, the sum of the matching number and the edge covering number equals the number of vertices. If there is a perfect matching, then both the matching number and the edge cover number are |V| / 2.

If A and B are two maximal matchings, then |A| ≤ 2|B| and |B| ≤ 2|A|. To see this, observe that each edge in B \ A can be adjacent to at most two edges in A \ B because A is a matching; moreover each edge in A \ B is adjacent to an edge in B \ A by maximality of B, hence

Further we get that

In particular, this shows that any maximal matching is a 2-approximation of a maximum matching and also a 2-approximation of a minimum maximal matching. This inequality is tight: for example, if G is a path with 3 edges and 4 nodes, the size of a minimum maximal matching is 1 and the size of a maximum matching is 2.

Read more about this topic:  Matching (graph Theory)

Famous quotes containing the word properties:

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)