Definition
The cone may be defined in the category of chain complexes over any additive category (i.e., a category whose morphisms form abelian groups and in which we may construct a direct sum of any two objects). Let be two complexes, with differentials i.e.,
and likewise for
For a map of complexes we define the cone, often denoted by or to be the following complex:
- on terms,
with differential
- (acting as though on column vectors).
Here is the complex with and . Note that the differential on is different from the natural differential on, and that some authors use a different sign convention.
Thus, if for example our complexes are of abelian groups, the differential would act as
Read more about this topic: Mapping Cone (homological Algebra)
Famous quotes containing the word definition:
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)
“Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.”
—The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on life (based on wording in the First Edition, 1935)
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)