In nuclear magnetic resonance, magic angle spinning (MAS) is a technique often used to perform experiments in solid-state NMR spectroscopy.
By spinning the sample (usually at a frequency of 1 to 70 kHz) at the magic angle θm (ca. 54.74°, where cos2θm=1/3) with respect to the direction of the magnetic field, the normally broad lines become narrower, increasing the resolution for better identification and analysis of the spectrum.
In any condensed phase, a nuclear spin experiences a great number of interactions. The main three interactions (dipolar, chemical shift anisotropy, quadrupolar) often lead to very broad and featureless lines. However, these three interactions in solids are time-dependent and can be averaged by MAS. The nuclear dipole-dipole interaction, between magnetic moments of nuclei averages to zero only at the magic angle, θm . The chemical shift anisotropy, a nuclear-electron interaction, averages to a non-zero value. The quadrupolar interaction is only partially averaged by MAS leaving a residual secondary quadrupolar interaction. In liquids, e.g. a solution of an organic compound, most of these interactions will average out because of the rapid time-averaged molecular motion that occurs. This orientation averaging in solution is mimicked by MAS of a solid. This causes the signal to become much narrower, giving rise to the isotropic value (which is of interest for structural determination of solid materials and compounds) and spinning sidebands which occur at multiples of the spinning speed and can be used to determine the chemical shift anisotropy of the nuclei.
The physical spinning of the sample is achieved via an air turbine mechanism. These turbines (or rotors) come in a variety of diameters (outside diameter), from 2.0-15.0 mm, and are usually spun on air or nitrogen gas. The rotors are made from a number of different materials such as ceramics e.g. zirconia, silicon nitride or polymers such as poly(methyl methacrylate) (PMMA), polyoxymethylene (POM). The cylindrical rotors are axially symmetric about the axis of rotation. Samples are packed into the rotors and these are then sealed with a single or double end cap. These caps are made from number of different materials e.g. Kel-F, Vespel, zirconia or boron nitride depending on the application required.
Magic-angle spinning was first described in 1958 by Edward Raymond Andrew, A. Bradbury, and R. G. Eades and independently in 1959 by I. J. Lowe. The name "magic-angle spinning" was coined in 1960 by Cornelis J. Gorter at the AMPERE congress in Pisa.
Famous quotes containing the words magic, angle and/or spinning:
“Theories of child development and guidelines for parents are not cast in stone. They are constantly changing and adapting to new information and new pressures. There is no right way, just as there are no magic incantations that will always painlessly resolve a childs problems.”
—Lawrence Kutner (20th century)
“I fly in dreams, I know it is my privilege, I do not recall a single situation in dreams when I was unable to fly. To execute every sort of curve and angle with a light impulse, a flying mathematicsthat is so distinct a happiness that it has permanently suffused my basic sense of happiness.”
—Friedrich Nietzsche (18441900)
“I, a spinning man,
Glory also this star, bird
Roared, sea born, man torn, blood blest.”
—Dylan Thomas (19141953)