Lyndon Word - Connection To de Bruijn Sequences

Connection To De Bruijn Sequences

If one concatenates together, in lexicographic order, all the Lyndon words that have length dividing a given number n, the result is a de Bruijn sequence, a circular sequence of symbols such that each possible length-n sequence appears exactly once as one of its contiguous subsequences. For example, the concatenation of the binary Lyndon words whose length divides four is

0 0001 0011 01 0111 1

This construction, together with the efficient generation of Lyndon words, provides an efficient method for constructing a particular de Bruijn sequence in linear time and logarithmic space.

Read more about this topic:  Lyndon Word

Famous quotes containing the word connection:

    We should always remember that the work of art is invariably the creation of a new world, so that the first thing we should do is to study that new world as closely as possible, approaching it as something brand new, having no obvious connection with the worlds we already know. When this new world has been closely studied, then and only then let us examine its links with other worlds, other branches of knowledge.
    Vladimir Nabokov (1899–1977)