Barbalat's Lemma and Stability of Time-varying Systems
Assume that f is function of time only.
- Having does not imply that has a limit at . For example, .
- Having approaching a limit as does not imply that . For example, .
- Having lower bounded and decreasing implies it converges to a limit. But it does not say whether or not as .
Barbalat's Lemma says:
- If has a finite limit as and if is uniformly continuous (or is bounded), then as .
Usually, it is difficult to analyze the asymptotic stability of time-varying systems because it is very difficult to find Lyapunov functions with a negative definite derivative.
We know that in case of autonomous (time-invariant) systems, if is negative semi-definite (NSD), then also, it is possible to know the asymptotic behaviour by invoking invariant-set theorems. However, this flexibility is not available for time-varying systems. This is where "Barbalat's lemma" comes into picture. It says:
- IF satisfies following conditions:
- is lower bounded
- is negative semi-definite (NSD)
- is uniformly continuous in time (satisfied if is finite)
- is lower bounded
- then as .
The following example is taken from page 125 of Slotine and Li's book Applied Nonlinear Control.
Consider a non-autonomous system
This is non-autonomous because the input is a function of time. Assume that the input is bounded.
Taking gives
This says that by first two conditions and hence and are bounded. But it does not say anything about the convergence of to zero. Moreover, the invariant set theorem cannot be applied, because the dynamics is non-autonomous.
Using Barbalat's lemma:
- .
This is bounded because, and are bounded. This implies as and hence . This proves that the error converges.
Read more about this topic: Lyapunov Stability
Famous quotes containing the words stability and/or systems:
“Traditions are the always in lifethe rituals and customs that build common memories for children, offer comfort and stability in good times and bad, and create a sense of family identity.”
—Marian Edelman Borden (20th century)
“The geometry of landscape and situation seems to create its own systems of time, the sense of a dynamic element which is cinematising the events of the canvas, translating a posture or ceremony into dynamic terms. The greatest movie of the 20th century is the Mona Lisa, just as the greatest novel is Grays Anatomy.”
—J.G. (James Graham)