Lunation Number

Lunation Number or Lunation Cycle is a number given to each lunation beginning from a certain one in history. There are several series of lunation numbers in use.

The most commonly used is the Brown Lunation Number, which defines lunation 1 as beginning at the first new moon of 1923, the year when Ernest William Brown's lunar theory was introduced in the major national astronomical almanacs. Lunation 1 occurred at approximately 02:41 UTC, January 17, 1923.

Another increasingly popular lunation number (simply called the Lunation Number), introduced by Jean Meeus, defines lunation 0 as beginning on the first new moon of 2000 (this occurred at approximately 18:14 UTC, January 6, 2000). The formula relating this Lunation Number with the Brown Lunation Number is: BLN = LN + 953.

The Islamic Lunation Number is the count of lunations in the Islamic calendar with lunation 1 as beginning on July 16, 622. It can be calculated using ILN = LN + 17038.

The Goldstine Lunation Number refers to the lunation numbering used by Herman Goldstine in his 1973 book New and Full Moons: 1001 B.C. to A.D. 1651, with lunation 0 beginning on January 11, 1001 BC, and can be calculated using GLN = LN + 37105.

The Hebrew Lunation Number is the count of lunations in the Hebrew calendar with lunation 1 beginning on October 7, 3761 BC. It can be calculated using HLN = LN + 71234.

The Thai Lunation Number is called "มาสเกณฑ์" (Maasa-Kendha), defines lunation 0 as beginning of the SouthEast-Asian Calendar on Sunday March 22, 638 (Julian Calendar). It can be calculated using TLN = LN + 16843.

Famous quotes containing the word number:

    In many ways, life becomes simpler [for young adults]. . . . We are expected to solve only a finite number of problems within a limited range of possible solutions. . . . It’s a mental vacation compared with figuring out who we are, what we believe, what we’re going to do with our talents, how we’re going to solve the social problems of the globe . . .and what the perfect way to raise our children will be.
    Roger Gould (20th century)