In fluid dynamics, Luke's variational principle is a Lagrangian variational description of the motion of surface waves on a fluid with a free surface, under the action of gravity. This principle is named after J.C. Luke, who published it in 1967. This variational principle is for incompressible and inviscid potential flows, and is used to derive approximate wave models like the so-called mild-slope equation, or using the average-Lagrangian approach for wave propagation in inhomogeneous media.
Luke's Lagrangian formulation can also be recast into a Hamiltonian formulation in terms of the surface elevation and velocity potential at the free surface. This is often used when modelling the spectral density evolution of the free-surface in a sea state, sometimes called wave turbulence.
Both the Lagrangian and Hamiltonian formulations can be extended to include surface tension effects.
Read more about Luke's Variational Principle: Luke's Lagrangian, Hamiltonian Formulation
Famous quotes containing the words luke and/or principle:
“Truly I tell you, today you will be with me in Paradise.”
—Bible: New Testament, Luke 23:43.
Jesus, to one of the criminals crucified with him.
“The monk in hiding himself from the world becomes not less than himself, not less of a person, but more of a person, more truly and perfectly himself: for his personality and individuality are perfected in their true order, the spiritual, interior order, of union with God, the principle of all perfection.”
—Thomas Merton (19151968)