Loudspeaker Measurement - Room Measurements

Room Measurements

At low frequencies, most rooms have resonances at a series of frequencies where a room dimension corresponds to a multiple number of half wavelengths. Sound travels at roughly 1 foot per millisecond (1100 ft/s), so a room 20 feet (6.1 m) long will have resonances from 25 Hz upwards. These ‘resonant modes’ cause large peaks and dips in response. A speaker in a room does not really ‘radiate’ low frequencies at all, most rooms being smaller than some musically significant frequency, but in this region instead couples into the resonant room modes, which are resonant standing wave patterns. Because this coupling is in part acoustic impedance dependent (and thus reslt from issues in each possible room or space—though different in every case), it cannot even be predicted from measurements made of speaker radiation alone. Put simply, some speakers present a very ‘stiff’ driving force and will drive a resonant pressure peak at a boundary more efficiently than a ‘floppy’ one. Dipole loudspeakers, such as electrostatics or ribbons, couple to the room differently, by velocity rather than pressure (citation?), and are generally thought to less excite resonant peaks.

Additionally, reflections, dispersion, absorption, etc. all strongly alter (fortunately or unfortunately) the perceived sound, not necessarily consciously noticeably for music or speech, at frequencies above those dominated by room modes. These depend on speaker location(s) with respect to reflecting, dispersing, or absorbing surfaces (including changes in speaker orientation) and on the listening position. In unfortunate situations, a slight movement of any of these, or of the listener, can cause considerable differences. Complex effects, such as stereo (or multiple channel) aural integration into a unified perceived "sound stage" can be lost easily.

There is limited understanding of how the ear and brain process sound to produce such perceptions, and so no measurement, or combination of measurements, can assure successful perceptions of, for instance, the "sound stage" effect. Thus, there is no assured procedure which will maximize speaker performance in any listening space (with the exception of the sonically unpleasant anechoic chamber). Some parameters, such as reverberation time (applicable only to larger volumes in any case), and overall room "frequency response" can be somewhat adjusted by addition or subtraction of reflecting, diffusing, or absorbing elements, but, though this can be remarkably effective (with the right additions or subtractions and placements), it remains something of an art and a matter of experience. In some cases, no such combination of modifications has been found to be very successful.

Read more about this topic:  Loudspeaker Measurement

Famous quotes containing the word room:

    I guess I think that films have to be made totally by fascists—there’s no room for democracy in making film.
    Don Pennebaker (b. 1930)