Lorentz Covariance - Lorentz Violating Models

Lorentz Violating Models

See also: Modern searches for Lorentz violation

In standard field theory, there are very strict and severe constraints on marginal and relevant Lorentz violating operators within both QED and the Standard Model. Irrelevant Lorentz violating operators may be suppressed by a high cutoff scale, but they typically induce marginal and relevant Lorentz violating operators via radiative corrections. So, we also have very strict and severe constraints on irrelevant Lorentz violating operators.

Lorentz violating models typically fall into four classes:

  • The laws of physics are exactly Lorentz covariant but this symmetry is spontaneously broken. In special relativistic theories, this leads to phonons, which are the Goldstone bosons. The phonons travel at less than the speed of light.
  • Similar to the approximate Lorentz symmetry of phonons in a lattice (where the speed of sound plays the role of the critical speed), the Lorentz symmetry of special relativity (with the speed of light as the critical speed in vacuum) is only a low-energy limit of the laws of Physics, which involve new phenomena at some fundamental scale. Bare conventional "elementary" particles are not point-like field-theoretical objects at very small distance scales, and a nonzero fundamental length must be taken into account. Lorentz symmetry violation is governed by an energy-dependent parameter which tends to zero as momentum decreases. Such patterns require the existence of a privileged local inertial frame (the "vacuum rest frame"). They can be tested, at least partially, by ultra-high energy cosmic ray experiments like the Pierre Auger Observatory.
  • The laws of physics are symmetric under a deformation of the Lorentz or more generally, the PoincarĂ© group, and this deformed symmetry is exact and unbroken. This deformed symmetry is also typically a quantum group symmetry, which is a generalization of a group symmetry. Deformed special relativity is an example of this class of models. It is not accurate to call such models Lorentz-violating as much as Lorentz deformed any more than special relativity can be called a violation of Galilean symmetry rather than a deformation of it. The deformation is scale dependent, meaning that at length scales much larger than the Planck scale, the symmetry looks pretty much like the PoincarĂ© group. Ultra-high energy cosmic ray experiments cannot test such models.
  • This is a class of its own; a subgroup of the Lorentz group is sufficient to give us all the standard predictions if CP is an exact symmetry. However, CP isn't exact. This is called Very Special Relativity.

Models belonging to the first two classes can be consistent with experiment if Lorentz breaking happens at Planck scale or beyond it, and if Lorentz symmetry violation is governed by a suitable energy-dependent parameter. One then has a class of models which deviate from Poincaré symmetry near the Planck scale but still flows towards an exact Poincaré group at very large length scales. This is also true for the third class, which is furthermore protected from radiative corrections as one still has an exact (quantum) symmetry.

Even though there is no evidence of the violation of Lorentz invariance, several experimental searches for such violations have been performed during recent years. A detailed summary of the results of these searches is given in the Data Tables for Lorentz and CPT Violation.

Read more about this topic:  Lorentz Covariance

Famous quotes containing the words violating and/or models:

    You must, to get through life well, practice industry with economy, never create a debt for anything that is not absolutely necessary, and if you make a promise to pay money at a day certain, be sure to comply with it. If you do not, you lay yourself liable to have your feelings injured and your reputation destroyed with the just imputation of violating your word.
    Andrew Jackson (1767–1845)

    The greatest and truest models for all orators ... is Demosthenes. One who has not studied deeply and constantly all the great speeches of the great Athenian, is not prepared to speak in public. Only as the constant companion of Demosthenes, Burke, Fox, Canning and Webster, can we hope to become orators.
    Woodrow Wilson (1856–1924)