Logical Conjunction - Introduction and Elimination Rules

Introduction and Elimination Rules

As a rule of inference, conjunction introduction is a classically valid, simple argument form. The argument form has two premises, A and B. Intuitively, it permits the inference of their conjunction.

A,
B.
Therefore, A and B.

or in logical operator notation:

Here is an example of an argument that fits the form conjunction introduction:

Bob likes apples.
Bob likes oranges.
Therefore, Bob likes apples and oranges.

Conjunction elimination is another classically valid, simple argument form. Intuitively, it permits the inference from any conjunction of either element of that conjunction.

A and B.
Therefore, A.

...or alternately,

A and B.
Therefore, B.

In logical operator notation:

...or alternately,

Read more about this topic:  Logical Conjunction

Famous quotes containing the words introduction, elimination and/or rules:

    We used chamber-pots a good deal.... My mother ... loved to repeat: “When did the queen reign over China?” This whimsical and harmless scatological pun was my first introduction to the wonderful world of verbal transformations, and also a first perception that a joke need not be funny to give pleasure.
    Angela Carter (1940–1992)

    The kind of Unitarian
    Who having by elimination got
    From many gods to Three, and Three to One,
    Thinks why not taper off to none at all.
    Robert Frost (1874–1963)

    As no one can tell what was the Roman pronunciation, each nation makes the Latin conform, for the most part, to the rules of its own language; so that with us of the vowels only A has a peculiar sound.
    Henry David Thoreau (1817–1862)