Logarithmic Integral Function - Series Representation

Series Representation

The function li(x) is related to the exponential integral Ei(x) via the equation

which is valid for x > 0. This identity provides a series representation of li(x) as

 {\rm li} (e^u) = \hbox{Ei}(u) =
\gamma + \ln |u| + \sum_{n=1}^\infty {u^{n}\over n \cdot n!}
\quad \text{ for } u \ne 0 \;,

where γ ≈ 0.57721 56649 01532 ... is the Euler–Mascheroni gamma constant. A more rapidly convergent series due to Ramanujan is

 {\rm li} (x) = \gamma + \ln \ln x + \sqrt{x} \sum_{n=1}^\infty \frac{ (-1)^{n-1} (\ln x)^n} {n! \, 2^{n-1}} \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} \frac{1}{2k+1} .

Read more about this topic:  Logarithmic Integral Function

Famous quotes containing the word series:

    Depression moods lead, almost invariably, to accidents. But, when they occur, our mood changes again, since the accident shows we can draw the world in our wake, and that we still retain some degree of power even when our spirits are low. A series of accidents creates a positively light-hearted state, out of consideration for this strange power.
    Jean Baudrillard (b. 1929)