In mathematics, a locally integrable function (sometimes also called locally summable function) is a function which is integrable (so its integral is finite) on any compact subset of its domain of definition. The importance of such functions lies in the fact that their function space is similar to Lp spaces, but its members are not required to satisfy any growth restriction on their behavior at infinity: in other words, locally integrable functions can grow arbitrarily fast at infinity, but are still manageable in a way similar to ordinary integrable functions.
Read more about Locally Integrable Function: Examples, Applications
Famous quotes containing the words locally and/or function:
“To see ourselves as others see us can be eye-opening. To see others as sharing a nature with ourselves is the merest decency. But it is from the far more difficult achievement of seeing ourselves amongst others, as a local example of the forms human life has locally taken, a case among cases, a world among worlds, that the largeness of mind, without which objectivity is self- congratulation and tolerance a sham, comes.”
—Clifford Geertz (b. 1926)
“For me being a poet is a job rather than an activity. I feel I have a function in society, neither more nor less meaningful than any other simple job. I feel it is part of my work to make poetry more accessible to people who have had their rights withdrawn from them.”
—Jeni Couzyn (b. 1942)